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Abstract

As one of the most important tasks in computer vision, unsupervised image classi-1

fication aims to group images into semantically meaningful clusters without using2

any labels. In this paper, we propose a one-stage clustering method called Unsuper-3

vised Community-consensus Contrastive Clustering (UCCC), which performs both4

instance- and cluster-level contrastive learning. In our framework, instance-level5

contrastive learning is capable of learning discriminative features, thereby helping6

construct reliable communities; cluster-level contrastive learning is conducted with7

the aid of the established communities, and further produces community-consensus8

cluster predictions. In particular, we design a novel instance-based loss function for9

the cluster-level contrastive learning. We demonstrate analytically that the gradient10

of our loss function could alleviate cluster degeneracy and thus prevent from a11

trivial solution, where the clusters are collapsed into a single entity. Extensive12

experimental results show that UCCC consistently outperforms state-of-the-art13

methods on six benchmark datasets.14

1 Introduction15

Deep neural networks have achieved human-level accuracy in image classification with the aid of16

large-scale datasets that contain annotated images, i.e. images with their corresponding semantic17

label. Nevertheless, annotating sufficient data is labor-intensive and time-consuming, establishing18

significant barriers for adapting the image classification systems to new domains. As a result, the19

focus of researchers is shifting to how to tackle image classification in an unsupervised manner.20

Some works [1–4] utilize the architecture of neural networks as a prior to cluster images, and refine21

the clusters iteratively by deriving the supervisory signal from the most confident sample [1, 2] or22

through cluster re-assignments calculated offline [3, 4]. Though this kind of two-stage methods could23

jointly learn representations and perform clustering, the errors accumulated during the alternation24

might result in sub-optimal clustering performance. On the other hand, the newly proposed CC [5]25

manages to learn discriminative representation and perform clustering simultaneously. The key idea26

of CC is to consider both instance- and cluster-level contrastive learning. To be specific, for a given a27

dataset, the positive and negative instance pairs are constructed through data augmentations, where28

the positive one is composed of two augmented views of the same instance and the other pairs are29

defined to be negative. By gathering the positive pairs and scattering the negatives pairs, the instance-30

and cluster-level contrastive learning are conducted in the row and column space of the feature matrix.31

In other words, the rows and columns of a feature matrix are regarded as the instance representations32

and cluster representations, respectively. However, using cluster representations for cluster-level33

contrastive learning may aggravate cluster degeneracy [3] and thus lead to a trivial solution, where34

the clusters are collapsed into a single entity. To deal with the aforementioned issue, CC requires an35

additional balance loss to maximize the entropy of cluster assignment probabilities, which however36

turns out to be the competing between the contrastive loss and the balance term. In contrast, we37
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(a) CC (b) UCCC (ours)

Figure 1: The t-SNE visualization of cluster-based contrastive clustering like CC [5] and our
proposed instance-based contrastive clustering UCCC. Both models are trained without the balance
term. It can be observed CC (Fig. 1a) suffers from severe degeneracy problem while UCCC
(Fig.1b), as an instanced-based contrastive clustering method, has no such issue. )

propose a one-stage clustering method called Unsupervised Community-consensus Contrastive38

Clustering (UCCC), which also adopts a dual contrastive learning framework but introduces a novel39

instance-based loss function for cluster-level contrastive learning.40

Since objects in the same group are more similar to each other than to those in other groups, similar-41

looking objects usually belong to the same cluster while objects that can be easily distinguished tend42

to come from different clusters. Motivated by this observation, for a given instance, we expect its43

cluster prediction close to the one estimated based on its similar-looking positive community; on44

the other hand, the unlike-looking negative community should give to different cluster prediction.45

In our framework, instance-level contrastive learning is capable of learning discriminative features,46

thereby helping construct reliable communities; cluster-level contrastive learning is conducted47

with the aid of the established communities, and further produces community-consensus cluster48

prediction. In particular, we design the cluster-level contrastive loss function to: 1) maximize the49

prediction similarity between the positive instance pairs, and 2) minimize the positive-negative50

prediction similarity between the negative instance pairs. Doing so allows us to encourage not only51

self-consistent cluster prediction but also consensual cluster predictions of community.52

The main contributions of this work are as follows: (1) We propose a one-stage clustering method53

called Unsupervised Community-consensus Contrastive Clustering (UCCC), in which a novel54

instance-based loss function for cluster-level contrastive learning is introduced. (2) We analyti-55

cally compare the cluster- and instance-based contrastive loss function, showing the former to be a56

factor of data collapse while the latter could effectively alleviate this problem. Empirical results also57

prove that our approach does not suffer from data collapse due to the designed instance-based loss58

function. (3) Extensive experiments on six benchmark datasets show that our approach outperforms59

state-of-the-art methods in terms of three widely used clustering metrics, i.e., normalized mutual60

information (NMI), adjusted rand index (ARI) and accuracy (ACC).61

2 Related Work62

Unsupervised Image Clustering. As one of the most important tasks in computer vision, unsu-63

pervised image classification aims to group images into semantically meaningful clusters without64

using any labels. Recently, Van Gansbeke et al. propose a two-staged approach, SCAN, where feature65

learning and clustering are decoupled. In particular, SCAN first employs a self-supervised task [7]66

to obtain high-level feature representations then clusters those representations by nearest neighbors.67

Another work that incorporates self-supervised representation learning into clustering is CC [5],68

which takes semantic labels as a special representation and conducts the instance- and the cluster-level69

contrastive learning simultaneously. In this work we adopt a dual contrastive framework like CC as70

multi-staged approaches take much more time to deploy and hardly achieves improvements compared71

with one-stage methods. The main difference between CC and ours is in how we perform cluster-level72

contrastive learning. CC conducts cluster-level learning in the column space of representation vectors,73

which would aggravate cluster degeneracy and thus require additional balance term. Instead, we74

perform cluster-level contrastive learning in the row space of representations by adopting a novel loss75

function, leading to substantial improvements in the clustering performance.76
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Figure 2: Our unsupervised community-consensus contrastive clustering (UCCC) framework consists
of an encoder f and two MLPs that correspond to an instance head gI and a cluster head gC . Two
random data augmentations are applied on each input image to obtain data pairs. Given data pairs, the
shared encoder is used to extract features from different augmentations. These feature are projected
into two subspace to conduct instance- and cluster-level contrastive learning using the corresponding
projection head. Taking the features in two subspace as prior, two community graph are constructed
to produce consensual cluster predictions with the guidance of the cluster-level contrastive loss.

3 Unsupervised Community-Consensus Contrastive Clustering77

As shown in Fig. 2 our model consist of two sub-branch: the Instance-level Contrastive Branch (ICB)78

and the Cluster-level Contrastive Branch (CCB). Both branches take the output of the encoder f(·) as79

input. ICB projects the input feature into a low-dimensional space where the corresponding contrastive80

loss is applied. The discriminative features learned by ICB can not only attain inter-cluster difference81

but also preserve intra-cluster distinction, and thus help construct reliable instance communities82

for CCB. Since the semantic label can be regarded as a special representation, CCB projects the83

input instances into a subspace with a dimensionality of the cluster number, and consensual cluster84

predictions are further achieved with the guidance of our proposed contrastive loss. In the following,85

we will describe how we perform a dual contrastive learning for unsupervised clustering in detail and86

introduce the proposed objective function at the end.87

3.1 Instance-level Contrastive Learning88

To learn representations without labels, we leverage a self-supervised approach SimCLR [7], which89

uses “instance discrimination” as a pretext task. Given a minibatch of images {xi}Ni=1, we apply90

random image transformations (e.g., cropping or blurring) twice on each image, thus generating91

two different view of them (augmentation a and b). The transformed images are projected to a92

subspace via z = gI(f(x)), where gI is a two-layer MLP projection head. The resulting 2N data93

points {z1a , z2a , ...,zNa , z1b , z2b , ...,zNb}will be used to calculate the contrastive loss as described94

below.95

Instance-level Contrastive Loss. The common idea of contrastive learning is the following: pull96

together an anchor and a “positive” sample (minimize the similarity between a positive pair), and97

push apart the anchor from many “negative” samples (maximize the similarity between negative98

pairs). A positive pair often consists of instances augmented from the same sample, and negative99

pairs are formed by the anchor and randomly chosen samples from the minibatch. Here, we use the100

dot product between L2 normalized features, which is cosine similarity, as the metric for instance101

similarity. Let z̃ = z
‖z‖ denote the normalized feature. Then instance-level contrastive loss for an102
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anchor i is defined as:103

`ia = − log
exp(z̃ia · z̃ib/τ)

ΣN
j=11[j 6=i][ exp(z̃ia · z̃ja/τ) + exp(z̃ia · z̃jb/τ) ]

, (1)

where 1[j 6=i] ∈ {0, 1} is an indicator function evaluating to 1 iff j = i and τ is the instance-level104

temperature parameter. Considering every augmented samples within a minibatch, the instance-level105

loss is computed as:106

Lins =

N∑
i=1

`ia + `ib . (2)

3.2 Cluster-level Contrastive Learning107

In cluster-level learning, we leverage the concept of "community consensus". That is, for a given108

instance, its similar-looking positive peers would come from the same cluster as itself; on the other109

hand, the unlike-looking negative peers should belong to different clusters. Following this idea, we110

first construct a positive graph and a negative graph to present the community relations.111

Community Peers. Image distinction is effectively preserved in the feature space learned by ICB112

since the instance-level contrastive loss encourages high similarity only between the instances aug-113

mented from the same image. Motivated by this observation, we use the similarities of representations114

learned by the instance head to construct positive/negative communities.115

Table 1: Positive confidence threshold with respect
to the number of clusters.

# of clusters 10 15 20 200

pos_conf 0.258 0.484 0.615 0.961

Specifically, we regard the community relations116

as a graph structure and define the positive117

and negative adjacency matrices, Apos,Aneg ∈118

R
2N×2N . As there might be ambiguous pairs119

that are not similar enough, a confidence thresh-120

old is required to filter out noisy information.121

We set the positive confidence threshold by the122

cosine value of an angle θ, where θ is calculated based on the number of clusters, C. Larger C usually123

implies more hardly distinguishable noisy pairs exist, and thus requires higher positive confidence.124

Table 1 summarizes the considered positive confidence in this work. See supplementary Sec. A for125

more details about the angle θ. The elements of positive adjacency matrix are thereby defined as:126

Aij,pos =

{
sim(z̃i, z̃j), if sim(z̃i, z̃j) > pos_conf
0, otherwise

, (3)

where the augmentation notations a, b of features z̃i, z̃j are ignored for simplification. Similarly, the127

elements of negative adjacency matrix are calculated as shown in Eq. 4. Since diverse negative peers128

could help the model learn how to distinguish the belonging cluster from other clusters, the negative129

confidence is set as 0, which is a relatively low value in comparison with the positive one.130

Aij,neg =

{
−sim(z̃i, z̃j), if sim(z̃i, z̃j) < neg_conf
0, otherwise

(4)

Assignment Aggregation. To produce cluster assignments for given samples, the input features131

are mapped into a subspace with a dimensionality of the cluster number via y = gC(f(x)), where132

y ∈ RC denotes a cluster assignment (i-th element can be interpreted as the probability of sample x133

being assigned to the cluster i) and gc is a two-layer projection head. Now that the community graphs134

are established, we would like aggregate the information from community relations, and estimate a135

positive and a negative cluster assignment for each instance according to its corresponding peers. For136

a mini-batch of augmented samples, its cluster assignments {yim}Ni=1,m∈{a,b} can be concatenated137

into a matrix Y ∈ R2N×C . We consider k-hop peer relations and compute the positive/negative138

assignment matrix inspired from [8]:139 
Y pos =

(∏k
i=1 Ãpos

)
Y

Y neg = Ãneg

(∏k−1
i=1 Ãpos

)
Y

, (5)
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Algorithm 1: Unsupervised Community-consensus Contrastive Clustering
Input: Dataset X , cluster number C, Training steps S, Batch size N , Temperature τ , confidence

threshold δ, structure of encoder f , instance head gI , and cluster head gC
Output: cluster assignments of dataset X
/* training */
for step s = 1 to S do

sample a minibatch {xi}Ni=1 from X
obtain 2N augmented samples {xim}Ni=1,m∈{a,b} through data augmentation
compute instance representations and cluster assignments by
zim = gI(f(xim)) and yim = gC(f(xim))

construct the positive/negative adjacency matrix through Eq. 3-4
compute positive and negative cluster assignments through Eq. // community fusion
compute the instance-level loss Lins and cluster-level loss Lclu through Eq. 1-2, 6
compute overall loss L by Eq. 7
update f , gI and gC to minimize L

/* testing */
for x ∈ X do

assign x to cluster c = arg max gC(f(x))

with the normalized adjacency matrices Ã∗ = D
− 1

2
∗ A∗D

− 1
2
∗ , ∗ ∈ {pos, neg} and D denoting a140

degree matrix where Dii =
∑

j Aij .141

Community-consensus Contrastive Clustering Loss. For an instance, the positive cluster assign-142

ment can be viewed as its cluster assignment while further taking positive peers into consideration; the143

negative cluster assignment, on the other hand, corresponds to the least possible cluster assignment144

that it would have. In this sense, we follow the idea of "community consensus" and propose a145

novel instance-based contrastive loss as shown in Eq. 6. In particular, the proposed loss function146

encourages self-consistent predictions by maximize the similarity between the assignments of positive147

instance pairs (augmented from the same image). Moreover, consensual predictions are achieved by148

minimizing the similarity between the positive and the negative assignments of all instance pairs (any149

two of instances within a mini-batch).150

Lclu = − log

N∑
i=1

exp
(
yia,pos · yib,pos + yia,neg · yib,neg

)
∑

∀(i,j,m,n)∈Φ

exp
(
yim,pos · yjn,neg

) , (6)

where Φ = {(i, j,m, n) | ∀ i, j ∈ {1, .., N} and ∀m,n ∈ {a, b}}.151

3.3 Overall Objective152

Algorithm 1 summarizes the full training and test process of the model. Both ICB and CCB are153

simultaneously optimized by the corresponding loss in an end-to-end manner. Hence, the overall154

objective function is written as:155

L = Lins + Lclu (7)

4 Contrastive Losses for clustering: cluster-based and instance-based156

In this section, we look at the cluster-based contrastive loss proposed in [5] and our instance-based157

clustering loss, showing why our formulation is superior to the former one.158

Formally, let Y m ∈ RN×C be the cluster assignments for a mini-batch under some augmentation m.159

Since each sample belongs to only one cluster, the rows of Y m tends to be one-hot. In this sense,160

the i-th column of Y m, denoted yi
m, can be viewed as a representation of the i-th cluster. For each161

cluster c, a positive cluster pair is formed by combining yc
a and yc

b, namely, the representations under162

5



two different augmentation, while other 2C − 2 pairs are considered to be negative. To minimize the163

inter-cluster similarities to separate different clusters, the cluster-based contrastive loss is written as:164

Lclu
clu = −

C∑
c=1,

m∈{a,b}

log
exp (yc

a · yc
b)

C∑
j=1

1[i 6=c]

[
exp

(
yc
m · y

j
a

)
+ exp

(
yc
m · y

j
b

)] (8)

It is observed that the cluster-based loss is conducted in the column space of assignment matrices,165

which is different from our instance-based clustering loss (Eq. 6) that measures the similarity in the166

row space.167

As stated in [5] the cluster-based contrastive loss requires the following balance term to avoid the168

trivial solution that most instances are assigned to the same cluster.169

Lbalance =

C∑
c=1

[P (yc
a) logP (yc

a) + P (yc
b) logP (yc

b)] (9)

Here, Lbalance is the negative entropy of assignment probabilities P (yc
m) =

∑N
i=1 y

c
im/‖Y ‖1,m ∈170

{a, b} within a mini-batch under each data augmentation. Such kind of entropy maximization would171

lead to a sub-optimal clustering result since there is no guarantee that all clusters within a dataset172

should be equal-sized. Our instance-based loss in contrast with Lclu
clu does not suffer from this issue173

and is capable of alleviating degeneracy. An analysis of the gradients with respect to the weights174

of the last layer of the cluster head wc (can be interpreted as a classifier for cluster c) supports this175

conclusion. Throughout the analysis, we assume the following assumption for simplification:176

Assumption 1 (Generalization). Let a, b be any two random augmentations. The statements below177

hold:178 {
yj
a ≈ yj

b ≈ ŷj for j ∈ {1, ..., C}
Ha ≈Hb ≈ Ĥ

,

where Hm denotes the embedding matrix (prior to the last layer of cluster head) for a mini-batch179

under augmentation m.180

Let Y m,pos be the positive cluster assignments for a mini-batch under augmentation m and the181

corresponding embedding matrix Hm,pos is a combination of transformed Ha and Hb as positive182

cluster assignments are simply linear combinations of original cluster assignments within a mini-183

batch. In a similar fashion, the negative cluster assignments for a mini-batch under augmentation184

m and its embedding matrix are denoted by Y m,neg and Hm,neg respectively. It is noted that the185

assumption of model generalization also implies:186 {
yj
a,∗ ≈ yj

b,∗ ≈ ŷj
∗ for j ∈ {1, ..., C}, ∗ ∈ {pos, neg}

Ha,∗ ≈Hb,∗ ≈ Ĥ∗

As shown in the Supplementary, the gradient for our clustering loss Lclu is derived as:187

∂Lclu

∂wc
≈ − 2

N

[
Ĥ

ᵀ
posŷ

c
pos + Ĥ

ᵀ
negŷ

c
neg

]
+

1

Ψ

[(
ÊĤpos

)ᵀ
ŷc
neg +

(
ÊĤneg

)ᵀ
ŷc
pos

]
, (10)

with Ψ =
∑N

i=1

∑N
j=1 exp

(
ŷi,pos · ŷj,neg

)
and Ê ∈ RN×N where Êij = exp

(
ŷi,pos · ŷj,neg

)
.188

The discussion about the cluster-based contrastive loss is in the Supplementary.189

Discussion. Since we use gradient descent [9] as our optimization algorithm, the classifiers wc is190

updated through wc = wc − η ∂Lclu

∂wc every step. To understand why our formulation does not lead191

to cluster degeneracy, we make the following observations. First, if an instance has a high assignment192

score (either positive or negative) with respect to a cluster c, the negative term in Eq. 10 would pull193

the classifier wc close to its corresponding embedding features while the positive term would push194

wc away from its opposite embedding. Second, because the community graph is established based195

on instance-level features, the community peers are sufficiently reliable to estimate positive/negative196

assignment, which guarantees Ŷ neg is not a zero matrix. This makes sure the growth of each cluster197

and prevents most instances from falling into the same entity.198
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Table 2: State-of-the-art comparison: The performance (%) of our model are reported in bold font.
For fair comparison with SCAN [6], we also report the performance of our method with ResNet18 as
the backbone of encoder.

Dataset CIFAR-10 CIFAR-20 STL-10 ImageNet-10 ImageNet-Dogs tiny-ImageNet

Metrics NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC

K-means [15] 8.7 4.9 22.9 8.4 2.8 13.0 12.5 6.1 19.2 11.9 5.7 24.1 5.5 2.0 10.5 6.5 0.5 2.5
SC [16] 10.3 8.5 24.7 9.0 2.2 13.6 9.8 4.8 15.9 15.1 7.6 27.4 3.8 1.3 11.1 6.3 0.4 2.2
AC [17] 10.5 6.5 22.8 9.8 3.4 13.8 23.9 14.0 33.2 13.8 6.7 24.2 3.7 2.1 13.9 6.9 0.5 2.7
NMF [18] 8.1 3.4 19.0 7.9 2.6 11.8 9.6 4.6 18.0 13.2 6.5 23.0 4.4 1.6 11.8 7.2 0.5 2.9
AE [19] 23.9 16.9 31.4 10.0 4.8 16.5 25.0 16.1 30.3 21.0 15.2 31.7 10.4 7.3 18.5 13.1 0.7 4.1
DAE [20] 25.1 16.3 29.7 11.1 4.6 15.1 22.4 15.2 30.2 20.6 13.8 30.4 10.4 7.3 18.5 12.7 0.7 3.9
DCGAN [21] 26.5 17.6 31.5 12.0 4.5 15.1 22.4 15.2 30.2 22.5 15.7 34.6 12.1 7.8 17.4 13.5 0.7 4.1
DeCNN [22] 24.0 17.4 28.2 9.2 3.8 13.3 22.7 16.2 29.9 18.6 14.2 31.3 9.8 7.3 17.5 11.1 0.6 3.5
VAE [23] 24.5 16.7 29.1 10.8 4.0 15.2 20.0 14.6 28.2 19.3 16.8 33.4 10.7 7.9 17.9 11.3 0.6 3.6
JULE [24] 19.2 13.8 27.2 10.3 3.3 13.7 18.2 16.4 27.7 17.5 13.8 30.0 5.4 2.8 13.8 10.2 0.6 3.3
DEC [1] 25.7 16.1 30.1 13.6 5.0 18.5 27.6 18.6 35.9 28.2 20.3 38.1 12.2 7.9 19.5 11.5 0.7 3.7
DAC [2] 39.6 30.6 52.2 18.5 8.8 23.8 36.6 25.7 47.0 39.4 30.2 52.7 21.9 11.1 27.5 19.0 1.7 6.6
ADC [25] - - 32.5 - - 16.0 - - 53.0 - - - - - - - - -
DDC [26] 42.4 32.9 52.4 - - - 37.1 26.7 48.9 43.3 34.5 57.7 - - - - -
DCCM [27] 49.6 40.8 62.3 28.5 17.3 32.7 37.6 26.2 48.2 60.8 55.5 71.0 32.1 18.2 38.3 22.4 3.8 10.8
IIC * [28] - - 61.7 - - 25.7 - - 59.6 - - - - - - - - -
EmbedUL [29] - - 81.0 - - 35.3 - - 66.5 - - - - - - - - -
PICA [30] 59.1 51.2 69.6 31.0 17.1 33.7 61.1 53.1 71.3 80.2 76.1 87.0 35.2 20.1 35.2 27.7 4.0 9.8
CC * [5] 70.5 63.7 79.0 43.1 26.6 42.9 76.4 72.6 85.0 85.9 82.2 89.3 44.5 27.4 42.9 34.0 7.1 14.0
SCAN [6] 71.5 66.5 81.6 44.9 28.3 44.0 67.3 61.8 79.2 - - - - - - - - -
UCCC (Ours) * ⇓
Res18 * 74.8 71.0 84.2 47.4 31.3 46.9 73.7 70.8 84.7 87.9 88.4 94.5 48.9 36.5 52.2 36.8 10.4 20.4
Res34 * 76.8 73.2 85.5 49.3 33.1 48.4 76.8 74.3 86.7 89.3 89.9 95.3 50.9 38.5 53.5 39.1 11.8 22.4

*: one-staged clustering method.

5 EXPERIMENTS199

The experimental evaluation is performed on six benchmark datasets, i.e. CIFAR-10, CIFAR-100200

[10], STL-10 [11], ImageNet-10, ImageNet-Dogs [2], and tiny-ImageNet [12]. The first two CIFAR201

datasets contain 60,000 images of 32x32 pixels. Following previous works [6, 5], we take 20 super-202

classes rather than 100 classes as the ground-truth for CIFAR-100. The next is STL-10 containing203

13,000 labeled images and 100,000 unlabeled images of 96x96 pixels. The additional 100,000204

unlabeled images are used to perform the instance-level contrastive learning. For the last three205

ImageNet datasets, only the training set is used. ImageNet-10 contains 13,000 images of 10 classes,206

ImageNet-Dogs consists of 19,500 images from 15 dog classes, and large-scaled tiny-ImageNet207

contains 100,000 images from 200 classes.208

We adopt ResNet18/ResNet34 [13] as our backbone net and modify the stride of the first convolution209

layer to 1, which enables the encoder to extract more delicate features. Especially for small-sized210

datasets (i.e. CIFAR), we remove the first maxpooling layer and replace the activation of the first211

layer to Mish [14]. For ICB, the dimensionality of the final embedding space is set to 128, and the212

temperature parameter τ is fixed to 0.5 in all experiments. For CCB, the dimensionality of cluster213

assignments is naturally set to the number of clusters, and the assignment aggregation is fixed as214

2-hop graph fusion in all used datasets. We set the batch size to N = 256× n_class/10 except for215

tiny-ImageNet, where N is set to 512 due to the memory limitation, and the image size is set to 32216

for CIFAR datasets, 224 for other datasets. The whole model is trained from scratch for 1,000 epochs217

on NVIDIA Tesla V100 GPU.218

Evaluation criterion. We evaluate the results based on three widely used clustering metrics in-219

cluding normalized mutual information (NMI), adjusted rand index (ARI) and accuracy (ACC). To220

further analyze the severity of cluster degeneracy, we also report Jensen–Shannon divergence (JSD)221

in Sec 5.2. Except for JSD, higher values of these metrics indicate better clustering performance.222

5.1 Comparison with state-of-the-arts223

We compare our method to the state-of-the-art on six different benchmarks. The compared state-224

of-the-art are mostly multi-staged methods, e.g. SC [16], NMF [18], AE [19], DAE [20], DCGAN225

[21], DeCNN [22], and VAE [23] obtain clustering results via k-means on the features extracted from226

images. According to the results shown in Table 2, UCCC outperforms these competing baselines227

by a large margin on all six datasets. Notably, UCCC obtains classification accuracy improvements228

compared with the closest competitor CC [5] by 6.5% on CIFAR-10, 5.5% on CIFAR-20, 1.7%229
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Figure 3: The performance evolution of UCCC and CC (w/o the balance loss) on CIFAR-10.

(a) NMI (b) ARI (c) ACC (d) JSD

on STL-10, 6.4% on ImageNet-10, 10.6% on ImageNet-Dogs. As CC adopts a dual contrastive230

framework like ours, the remarkable results prove the efficacy of our design for cluster-level learning.231

5.2 Cluster Degeneracy232

Figure 4: optimization surface

Many previous works [15, 5, 6] would lead to degenerate solu-233

tions because such solutions are saddle points of the adopted234

objective function (Fig. 4). To avoid cluster degeneracy, they235

usually manage to assign an equal number of samples to each236

cluster by maximizing the entropy of clustering result. How-237

ever, this kind of optimization may not be a general solution238

especially when it deals with imbalance clusters.239

In Fig. 3, the performance curves of our approach and CC240

(w/o Eq. 9) during the training phase are presented to compare241

ours with the degenerate one. As the training process goes, the242

performances of UCCC in the four considered metrics are all243

improved, implying cluster assignments become more reason-244

able. By contrast, CC hardly achieves small improvements due245

to the degeneracy problem, which can be reflected by the high246

divergence between the distribution of the ground truth and247

its clustering. We further perform t-SNE in the instance-level248

space on both UCCC and CC (Fig. 1). The result well confirms our model does not suffer from249

cluster degeneracy since there is no dominant cluster in our result (Fig. 1b).250

5.3 Ablation Study251

5.3.1 Inductive Clustering252

Table 3: The relative performance drops
(%) under inductive setting over trans-
ductive setting.

Metrics NMI ARI ACC

STL-10 (Res18) -2.8 -3.7 -2.3
STL-10 (Res34) -2.9 -3.4 -3.0
CIFAR-10 (Res18) -2.4 -3.3 -2.0
CIFAR-10 (Res34) -3.4 -2.8 -1.5
CIFAR-20 (Res18) -3.8 -2.8 -1.1
CIFAR-20 (Res34) -4.5 -3.8 -2.1

To further validate the effectiveness of UCCC, our method253

is evaluated on the three datasets under a more realistic254

inductive setting, where testing images are not available255

during the training phase. Specifically, we trained the256

model on the training set while measuring the performance257

using the images in testing split. Table 3 shows our relative258

performance drops over transductive setting. As can be259

seen, the performance drops are stable even though the260

used CNN backbones are different. In particular, the ACC261

drops on all three datasets are less than 3%, which well262

demonstrates the robustness of UCCC.263

5.3.2 K-hop Graph Fusion264

To study the effect of k-hop graph fusion, we take the performance with k = 1 as the baseline and265

present the trends of NMI/ARI/ACC gain with respect to varying values of k over {1,2,3,4} on four266

benchmark datasets. As shown in Fig. 5, we can see that performance improvements are achieved267

when considering more than 1-hop neighbors on the four datasets. It is also observed that using 2-hop268

graph fusion leads to the best performance in most cases because taking too many community peers269

into consideration usually comes with noisy information. Nevertheless, for ImageNet-Dogs dataset,270

8



Figure 5: The influence of k-hop graph fusion on four datasets.

(a) NMI (b) ARI (c) ACC

the results using 4-hop graph fusion outperform the one with k = 1 by a large margin (+3.4% in271

NMI, +6.5% in ARI, +8.4% in ACC). The reason might be that ImageNet-Dogs consists of relatively272

similar images compared to other datasets, and thus more available information is beneficial to the273

model learning.274

6 Conclusion275

Based on the observation that similar-looking objects usually belong to the same cluster while objects276

that can be easily distinguished tend to come from different clusters, we propose the Unsupervised277

Community-consensus Contrastive Clustering (UCCC) which conducts the instance- and cluster-level278

contrastive learning simultaneously under a unified framework. By incorporating a novel instance-279

based contrastive loss into cluster-level learning, our model is encouraged to produce consensual280

cluster assignments. We further verify that our network does not lead to degenerate solutions due to281

the designed cluster-level contrastive loss. Experimental evaluation shows that the proposed method282

outperforms prior work by large margins for a variety of datasets.283

Broader Impact284

For unsupervised classification, there is no need to specify in advance all the classes in the image,285

which reduces the dependence of deep learning on massive labeled data. The proposed method286

in this work adopts contrastive learning to produce reliable cluster assignments. As a one-stage287

deep clustering method, our work is capable of extracting discriminative features and performing288

clustering through one-step training. Although such training process could reduce the deployment289

difficulty of clustering algorithms in practical applications, providing the opportunity to learn from290

big unannotated datasets may cause problems concerning users’ information security and personal291

privacy if not controlled.292

Broadly speaking, there are two shortcuts of deep clustering. Firstly, the prediction accuracy is still293

lower than models trained in a supervised manner. Thus clustering is not applicable to those settings294

that require high accuracy and confidence, e.g., self-driving cars. Secondly, computational complexity295

for deep clustering is much higher than the traditional algorithms, e.g. k-means. Thus the deep model296

can not be applied to applications where computational resource is limited.297
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A Positive Confidence Threshold1

Figure 1: The left shows the positive confidence curve, cos θ, using different values of tolerant
parameter t, and the blue area denotes the similarities that would be taken as positive when t = 4.0.
The right illustrates the threshold θ, which is calculated based on the number of clusters and tolerant
parameter t. The larger t means the higher tolerance for the overlapping (ambiguous) area between
two different clusters.

As we take the cosine similarity (dot product between L2 normalized vectors) as our similarity metric,2

we use a threshold angle θ to filter out noisy information from ambiguous instance pairs. That is, if3

the similarity between an instance pair is lower than cos θ, we would regard it as a ambiguous pair.4

To cluster data samples into groups, the feature vectors extracted from samples should be separable5

enough on the embedding space. Applying L2 normalization is actually projecting a feature vector6

into a point on unit sphere. For simplification, we consider the unit 2-sphere as the embedding sphere.7

Ideally, the embedding features are uniformly scattered on the surface of the sphere. We assume each8

cluster takes over the equal size of surface area and measure the surface area by taking each cluster9

as a spherical cap. Then for any given instance, we consider a spherical cap where the pole is its10

embedding point on the sphere, and regard the points on the cap as its positive peers. In other words,11

the threshold angle θ is calculated as:12

4πr2 · t = n_cluster · 2πr2 (1− cos θ)
⇒ cos θ = 1− 2t

n_cluster
(1)

Here t is a tolerant parameter controlling the tolerance for the intra-cluster overlapping area (Fig. 113

right). The tolerant parameter is set to 4 in all experiments as we empirically find it leads to the best14

performance in overall. See Sec. C.2 for the ablation study on the impact of t.15

B Gradient Derivation16

In this section, we present our derivation for the gradients of the two considered cluster-level17

contrastive losses, Lclu
clu and Lclu, with respect to a classifier for cluster c, wc. The notations for18

derivations are summarized in Table 1. For convenience, we reprint below the expressions for each.19

Lclu
clu = −

C∑
c=1,

k∈{a,b}

log
exp (yc

a · yc
b)

C∑
j=1

1[i 6=c]

[
exp

(
yc
k · y

j
a

)
+ exp

(
yc
k · y

j
b

)] (2)

Lclu = − log

N∑
i=1

exp
(
yia,pos · yib,pos + yia,neg · yib,neg

)
∑

∀(i,j,k,m)∈Φ

exp
(
yik,pos · yjm,neg

) , (3)
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Table 1: Notations of gradient derivations.
Notations Dimensionality Descriptions

N ∈ R Mini-batch size
C ∈ R Number of clusters
H ∈ R Hidden dimension of cluster head gC
a, b ∈ R The first / second random augmentation
wc ∈ RH Weights of the last layer for cluster c

Hk ∈ RN×H Hidden feature matrix of a mini-batch using augmentation k
Hk,pos , Hk,neg ∈ RN×H Positive / Negative feature matrix of a mini-batch using augmentation k
hik ∈ RH i th row of feature matrix hk

hik,pos , hik,neg ∈ RC i th row of positive / negative assignment matrix hk,pos / hk,neg

Y k ∈ RN×C Assignment matrix of a mini-batch using augmentation k
Y k,pos , Yk,neg ∈ RN×C Positive / Negative assignment matrix of a mini-batch using augmentation k
yc
k ∈ RN c th column of assignment matrix Y k

yik ∈ RC i th row of assignment matrix Y k

yik,pos , yik,neg ∈ RC i th row of positive / negative assignment matrix Y k,pos / Y k,neg

ycik,pos , y
c
ik,neg ∈ R c th element of positive / negative assignment yik,pos / yik,neg

where20

Φ = {(i, j, k,m) | ∀ i, j ∈ {1, .., N} and ∀ k,m ∈ {a, b}}.

B.1 Cluster-based: Cluster-level Contrastive21

Recall that contrastive losses is to maximize the similarity between positive pairs and minimize the22

similarity of negative ones, For convenience, we consider pairwise relations and divide the gradient23

into two parts: (1) positive-pair term and (2) negative-pair term.24

We start from discussing the stabilization of model generalization, which means the model could25

produce similar results no matter whatever kind of augmentation an image has been applied. Both26

CC [1], which proposed cluster-based clustering loss, and our model leverage a dual contrastive27

framework. Such dual contrastive framework incorporates instance-level contrastive learning, so high28

similarities between the instances augmented from the same image are encouraged. As a result, we29

have the assumption of generalization below.30

Assumption 1 (Generalization) Let a, b be any two random augmentations. The statements below31

hold:32 {
yj
a ≈ yj

b ≈ ŷj for j ∈ {1, ..., C}
Ha ≈Hb ≈ Ĥ

33

There is another assumption that helps our derivation. We assume the cluster head would produce34

confident results, which means there exits a high prediction score with respect to some specific cluster35

c′. To verify this assumption, we study on the confidence of our cluster assignment in Sec. C.1.36

Assumption 2 (Confident Cluster Assignment) There exists some c′ ∈ {1, ..., C} such that37

yc
′

i ≈ 1 and yji ≈ 0, ∀j 6= c′

38

This implies that39

yc
a · yj

a ≈ yc
a · y

j
b ≈ 0 for j 6= c, j ∈ {1, ..., C} (4)

2



With the approximations above, the gradients of cluster-level clustering loss in terms of posi-40

tive/negative pairs can be derived as:41

∂Lclu
clu

∂wc

∣∣∣∣
pos

= −2
∂

∂wc
log [ exp (yc

a · yc
b) ]

≈ −2
∂

∂wc
(ŷc · ŷc) (with Asm. 1)

= −4 Ĥ
ᵀ
ŷc (5)

∂Lclu
clu

∂wc

∣∣∣∣
neg

= 2
∂

∂wc
log


C∑

j=1
k∈{a,b}

1[j 6=c]

[
exp

(
yc
k · yj

a

)
+ exp

(
yc
k · y

j
b

)] 
= 2

∂

∂wc
log


C∑

j=1

1[i6=c]

[
exp

(
yc
a · yj

a

)
+ exp

(
yc
b · y

j
b

)
+ 2 exp

(
yc
a · y

j
b

)]
≈ 2

∂

∂wc
log

 4

C∑
j=1

1[j 6=c] exp
(
ŷc · ŷj

) (with Asm. 1)

=

8
C∑

j=1

[
1[j 6=c] Ĥ

ᵀ
ŷj
]

4
C∑

j=1

1[j 6=c] exp
(
ŷc · ŷj

)
≈ 2

C − 1

C∑
j=1

[
1[j 6=c] Ĥ

ᵀ
ŷj
]

(with Eq. 4) (6)

Sum over Eq. 5 and Eq. 6, the gradient of cluster-based contrastive clustering loss is written as:42

∂Lclu
clu

∂wc
=
∂Lclu

clu

∂wc

∣∣∣∣
pos

+
∂Lclus

∂wc

∣∣∣∣
neg

= −4 Ĥ
ᵀ
ŷc +

2

C − 1

C∑
j=1

[
1[j 6=c] Ĥ

ᵀ
ŷj
]

= −2 Ĥ
ᵀ

2 ŷc − 2

C − 1

C∑
j=1

1[j 6=c] ŷ
j

 (7)

Discussion. The classifiers wc is updated through wc = wc − η ∂Lclu
clu

∂wc every step. Such optimiza-43

tion would pull each classifier wc closer to the samples that are assigned to cluster c and push it away44

from the other samples. However, if there exists a cluster c′ such that most samples in a mini-batch45

are assigned to cluster c′, we can make the following observations. First, the classifier wc′ would46

get closer to most samples in a mini-batch. Second, for the other classifiers wc, c 6= c′, the strength47

of pushing classifiers away from most samples in a mini-batch (which are assigned to cluster c′) is48

larger than the one that pulls them closer to the samples belonging to their corresponding cluster c.49

The observations above imply that the dominant cluster c′ is becoming larger while the growth of the50

other clusters are being suppressed. Hence, the optimization through the cluster-based contrastive51

loss could not alleviate cluster degeneracy.52
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B.2 Instance-based: Cluster-level Contrastive Loss53

Notice that we construct the communities in the instance-level subspace, where instance distinction is54

preserved with the guidance of instance-level contrastive loss. As we have discussed in appx. B.1, the55

assumption of model generalization holds, thus implying the statements in the following also hold:56

{
yia,∗ ≈ yib,∗ ≈ ŷi,∗
Ha,∗ ≈Hb,∗ ≈ Ĥ∗ for i ∈ {1, ..., N}, ∗ ∈ {pos, neg} (8)

With Asm. 2, we can further have57

yia,pos · yib,pos ≈ yia,neg · yib,neg ≈ 1 (9)
Hence, the gradients with regards to positive/negative pairs are:58

∂Lclu

∂wc

∣∣∣∣
pos

= − ∂

∂wc
log

{
N∑
i=1

exp
(
yia,pos · yib,pos + yia,neg · yib,neg

)}

≈ − ∂

∂wc
log

{
N∑
i=1

exp
(
ŷi,pos · ŷi,pos + ŷia,neg · ŷib,neg

)}
(with Eq. 8)

≈
−2 exp 2

[
Ĥ

ᵀ
posŷ

c
pos + Ĥ

ᵀ
negŷ

c
neg

]
N exp 2

(with Eq. 9)

= − 2

N

[
Ĥ

ᵀ
posŷ

c
pos + Ĥ

ᵀ
negŷ

c
neg

]
(10)

∂Lclu

∂wc

∣∣∣∣
neg

=
∂

∂wc
log

 ∑
∀(i,j,k,m)∈Φ

exp
(
yik,pos · yjm,neg

)
≈ ∂

∂wc
log

4

N∑
i=1

N∑
j=1

exp
(
ŷi,pos · ŷj,neg

) (with Eq. 8)

=
1

Ψ

[(
ÊĤpos

)ᵀ
ŷc
neg +

(
ÊĤneg

)ᵀ
ŷc
pos

]
(11)

where59

Ψ ≡
N∑
i=1

N∑
j=1

exp
(
ŷi,pos · ŷj,neg

)
(12)

Êij ≡ exp
(
ŷi,pos · ŷj,neg

)
, Ê ∈ RN×N (13)

Therefore, the total gradient of the proposed instance-based contrastive loss is derived as:60

∂Lclu

∂wc
=
∂Lclu

∂wc

∣∣∣∣
pos

+
∂Lclu

∂wc

∣∣∣∣
neg

= − 2

N

[
Ĥ

ᵀ
posŷ

c
pos + Ĥ

ᵀ
negŷ

c
neg

]
+

1

Ψ

[(
ÊĤpos

)ᵀ
ŷc
neg +

(
ÊĤneg

)ᵀ
ŷc
pos

]
(14)

C More Ablation Studies61

C.1 Confidence Learning Curve62

We plot the confidence learning curve by averaging the maximum assignment score of each sample63

within a mini-batch. As shown Fig. 2, the confidence score are quite high (approximate to 1) after a64

few training epochs, which verifies the assumption we made for the gradient derivation.65
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Figure 2: The learning curve of assign-
ment confidence on CIFAR-10.

Figure 3: The training curves of our proposed cluster-
level contrastive loss using different values of the tol-
erant parameter t on CIFAR-10.

C.2 Tolerant Parameter66 Table 2: The influence of dif-
ferent tolerant parameter t on
CIFAR-10 dataset.

Metrics NMI ARI ACC

t = 2 70.8 64.6 79.0
t = 3 73.1 70.1 83.0
t = 4 74.8 71.0 84.2
t = 5 74.0 70.4 83.8
t = 6 69.9 64.4 77.8

To observe the influence of the tolerant parameter t for positive confi-67

dence threshold, we conduct experiments varying t from {2,3,4,5,6}.68

Table 2 shows the proposed model achieves the best performance69

when t = 4. Additionally, if the tolerant parameter is too large, the70

performances on three considered metrics might drop significantly.71

As the large t implies the low threshold value to construct positive72

peer relations, information from the noisy peers may cause the model73

hard to distinguish samples from different clusters.74

According to the loss curves (Fig. 3), we also find that larger values of t usually require more training75

steps for model convergence.76

C.3 Qualitative Analysis77

We conducted a qualitative analysis to examine how well the clustering result is on CIFAR-10,78

ImageNet-10, and large-scale tiny-ImageNet dataset.79

CIFAR-10 Dataset. The confusion matrix between the ground truth labels and classification results80

is sown in Fig. 4. A perfect classification would only place items on the diagonal line. The figure81

shows that the proposed model finds the right cluster for most images except for some error-prone82

classes such as birds, cats, and dogs.83

Figure 4: The confusion matrix on CIFAR-10.

(a) The clustering result of UCCC.

(b) Ground-truth labels.

Figure 5: t-SNE visualization on CIFAR-10.
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Figure 6: Example images from the cluster dogs and cats on CIFAR-10. The two
left blocks contain the correctly classified images and those misclassified images are
demonstrated in the right blocks.

We further perform t-SNE visualization in the instance-level embedding space. Fig. 5 compares the84

visualization results of predicted clusters and the ground-truth labels, where different colors indicated85

different labels/clusters. As shown in Fig. 5b, it is observed that the extracted features from class86

dogs and class cat (denoted in navy and light pink respectively) are hardly distinguishable. This87

explains why many dog images are misclassified as cats, and vice versa (Fig. 6). Nonetheless, the88

result in Fig. 5a still proves the efficacy of the instance-level contrastive learning since the features89

from different clusters are mostly well separated.90

ImageNet-10 Dataset. The confusion matrix and the t-SNE visualization are demonstrated in the91

figures below. In Fig. 7, a high concentration of items on the diagonal line confirms the proposed92

model correctly groups all samples into 10 classes. Fig. 8 also verifies our clustering result is almost93

the same as the ground-truth labels.94

Figure 7: The confusion matrix on ImageNet-10.

(a) The clustering result of UCCC.

(b) Ground-truth labels.

Figure 8: t-SNE visualization on ImageNet-10.
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Superclass Classes

Animals

goldfish salamandra bullfrog bell toad American alligator
boa constrictor trilobite scorpion black widow tarantula
centipede goose koala jellyfish bruin
brain coral snail slug sea slug Maine lobster
crawfish black stork king penguin albatross dugong
Chihuahua Yorkshire terrier golden retriever alsatian standard poodle
tabby Persian cat Egyptian cat puma lion

Insects ladybug fly bee hopper walkingstick
roach mantis dragonfly monarch sulfur butterfly

Others

holothurian guinea pig hog ox bison
bighorn gazelle dromedary orang chimp
baboon African elephant panda abacus judge’s robe
altar apron backpack banister barbershop
barn cask basketball tub wagon
beacon beaker beer bottle bikini binoculars
birdhouse bowtie brass broom pail
bullet meat market taper cannon cardigan
ATM CD player chain chest Christmas stoching
cliff dwelling keypad candy store convertible crane
dam desk board drumstick dumbbell
flagpole fountain freight car frypan fur coat
gasmask go-kart gondola hourglass iPos
ricksha kimono lampshade mower lifeboat
limo magnetic compass maypole military uniform mini
moving van nail neck brace obelist oboe
organ parking meter pay-phone paling pill bottle
plunger pole wagon poncho pop bottle
potter’s wheel missile punch bag reel icebox
remote rocker rugby ball sandal school bus
scoreboard sewing machine snorkel sock sombrero
space heater spider web sport car steel arch bridge stopwatch
shades suspension bridge bathing trunks syringe teapot
teddy thatch torch tractor triumphal arch
trolleybus turnstile umbrella vestment viaduct
volleyball water jug water tower wok wooden spoon
drop coral reef lakeside coast acorn
comic book plate alp

Food

guacamole icecream lolly pretzel mashed potato
cauliflower bell pepper mushroom orange lemon
banana poegranate meatloaf pizza potpie
espresso

Table 3: Superclass definition for tiny-
ImageNet.

Figure 9: The confusion matrix on tiny-ImageNet.

Tiny-ImageNet Dataset - 200 classes. In Fig. 9, we mark the superclasses defined in Table 3. The95

results show that the misclassified examples tend to be assigned to other clusters from within the96

same superclass. Additionally, we demonstrate images from the testing set that were assigned to the97

same cluster in Fig. 10, 11, and 12. In particular, Fig. 12 shows some failure cases where different98

objects are grouped together due to similar image background.99

Figure 10: Example clusters of tiny-ImageNet (1).
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Figure 11: Example clusters of tiny-ImageNet (2).
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Figure 12: Incorrect clusters of tiny-ImageNet predicted by our model.
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