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1 Introduction

Cerebral hemorrhage, bleeding that occurs around or within the brain, is a serious health problem
requiring rapid and often intensive medical treatment. The cerebral hemorrhage can be divided into
5 categories: Intracerebral hemorrhage (ICH), Intraventricular hemorrhage (IVH), Subarachnoid
hemorrhage (SAH), Subdural hemorrhage (SDH), and Epidural hemorrhage (EDH). While the
diagnosis requires an urgent procedure, the process is complicated and often time-consuming. Herein,
this problem is attempted to be solved by learning-based methods.

2 Methodology or Model Architecture

2.1 Preprocessing

Each CT image was firstly stacked with two aside ones in the preprocessing step to extract more
information owing to the property of sequential CT scanning (Figure 3 in appendix). Limited
augmentation strategies, rotation with little color adjustment, were utilized to avoid interfering with
the intrinsic CT data distribution.

2.2 Models

2.2.1 Big Dataset: CNN-LSTM

ResNet18 was utilized as the features extraction backbone trained with asymmetric loss. Warmup
steps were leveraged to avoid unstable model initialization during the previous training, and
cosine-annealing learning rate scheduling was applied, which let the model have a chance to jump
out if it got stuck into a local minimum.

Finally, a stacked LSTM architecture trained with BCE loss, utilizing 512-dim embedding from
ResNet18, was leveraged to further enhance the overall performance. The main effect of the LSTM
model is to get the temporal information, which thoroughly considers a patient at the same time.
Shortcuts were made from every stage of LSTM output and then add to the final FC layer, which

Deep Learning for Computer Vision (Fall 2020) , National Taiwan University.



Figure 1: CNN-LSTM: ResNet18 backbone, with layer shortcut Bi-LSTM.

could solve the gradient vanishing problems and make training converged faster (Figure 4 in
appendix).

2.2.2 Small Dataset: Self-supervised Learning with Backbone

SimCLR[1] is a method that uses data augmentations for distinguishing features in the latent space.
Specifically, after the feature extractor, the contrast loss is defined, which helps the positive features
become more closely and the negative ones more farther away from each other. Due to the label
deficiency in the small dataset, this technique, which enables distinguishing the positive and negative
samples without labels via appropriate data augmentations, was utilized to overcome this problem.
Afterward, the pretrained weight from SimCLR was fine-tuned by the labels from the small dataset
(Figure 1).

2.3 Loss functions

Asymmetric Multi-label Loss (stage-1)

{ L+ = (1− p)γ+ log(p),

L− = pγ− log(1− p).
(1)

Asymmetric loss[2], an improved focal loss designed for unbalanced positive and negative samples
training with a tunable parameter γ controlling the model to focus on positive samples, was utilized.
It was found that the positive and negative portion of the dataset was 13:1, so γ+ = 0 and γ− = 2
were chosen. Furthermore, a clip design, which would prune the class if the confidence of the class
was extremely excessive, would enable those uncertain classes to have more possibilities to be trained
and allow the model to get their features.

3 Implementation Details

3.1 Hyperparameter Choices during preprocessing

All the CT images were stacked into three channels. Random rotate(40), random horizontal flip and
random color jitter (brightness=0.1, contrast=0.1, saturation=0.1, hue=0) with apply probability=0.4
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strategies were selected for augmentation while in the valid setting, images were simply transformed
into tensor.

3.2 Hyperparameter Choices during model training

Regarding the full dataset training, cosine-annealing learning rate scheduling was set from 2× 10−4

to 10−5 with Adam optimizer, and batch size was set to 48. During the LSTM training stage, the
LSTM unit was set at 64 with batch size at a value of 32. For the small dataset, ResNet18 was also
selected as the backbone. BCE loss with pos_weight and Adam were used as loss function and
optimizer, respectively. The learning rate was set at 10−3 and the batch size was 48. During the
SimCLR, 0.5 was selected as the temperature parameter.

4 Experiments

4.1 Results

Table 1: Comparison results of stage 2 LSTM with different rotation angles

Table 2: Best results

For the case of using a full training dataset, multitudinous optimizers and augmentation parameters
were firstly investigated with vanilla ResNet18 trained with BCE loss, which demonstrated the
detrimental effect of either large batch size or color adjustment. However, the model with BCE loss
could only achieve at most 73.10% f2 score (Table 3 in appendix). If BCE loss was replaced with
asymmetric loss, the model could achieve 2.50% f2 enhancement, compared to the former one. It
showed that asymmetric loss is an effective strategy to further improve model performance (Table
6 in appendix). Moreover, two-stage training with stacked LSTM, which had been introduced in
chapter 3, obtained the best performance with 78.25%. Comparing to the ResNet18 model which
trained with asymmetric loss, it enabled approximate 2.75% f2 enhancement (Table 1 and 2). As
for the case of using small a training dataset, the self-supervised model obtained the best performance
with 64.50% (Table 2).

Besides the designs of model architecture, multifarious strategies were also leveraged, struggling to
find a better performance. However, the endeavor was in vain (Table 4 and 5 in appendix).

4.2 T-SNE

According to the close observation of raw CT data, it was found that all patients were scanned from
the vertex to different endpoints, such as at mandibular and ocular level. It led to the fact that not
every patient had the same number of images.

To visualize and analyze the latent space of the ResNet18 backbone model, the t-SNE technique was
utilized. Embeddings of images were firstly extracted from different datasets and then reduced from
512 dimensions to 2 dimensions. Considering the original rules of position labeling, which labeled
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vertex to mandibular as 0 to 45, all the position levels were accordingly reversed for each patient (i.e.
0 denotes the vertex). It showed that the embeddings of vertex CT images and mandibular CT images
were clustering together on the left side of the three t-SNE plots while the embeddings of middle CT
images were on the right side. Therefore, it could be claimed that our ResNet18 backbone model
could learn the position information, and position information was not required to be provided as an
additional feature for training (Figure 2).

(a) Training dataset (b) Validation dataset (c) Testing dataset

Figure 2: t-SNE for embeddings extracted by ResNet18 backbone model.

4.3 Saliency map

To elucidate what did the model learn, an explainable saliency map was further utilized (Figure 5 in
appendix). The left pair unequivocally showed that the model did focus on the region where the ICH
occurred. On the other hand, the saliency region distributed somehow evenly in the right pair, which,
thus, was predicted erroneously.

4.4 Mislabeled

Some strange patterns, for example, “...101...” and “10101”, did exist in the provided ground-true
labels. After a thorough examination, several of them were mislabeled and would deteriorate the
model performance (Figure 6 in appendix). However, our model could still predict the diagnosis
correctly, which definitely demonstrates the advantages of deep learning model utilization in the
clinical scenario to reduce misdiagnosis.

5 Conclusion

The merit of utilizing stacked CT images, novel asymmetric loss, and Bi-LSTM to enhance the vanilla
CNN model in ICH multi-label prediction is demonstrated in this work. Some unreasonable data
augmentation or training strategies that would deteriorate model performance are also explicated in
the aforementioned experiments. Besides, explainable saliency maps and distribution of embedding
space enable insight into what the model learned. Finally, the correct prediction of erroneously
labeled data does manifest the unprecedented potential of leveraging deep learning technique in the
clinical diagnosis assistance.
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6 Appendix

Focal Loss

 L+ = (1− p)γ log(p),

L− = pγ log(1− p).
(2)

Binary Cross Entropy Loss (stage-2)

L = p log(p) + (1− p) log(1− p) (3)

Figure 3: (a)(b)(c) are CT images. For a training sample, we stacked 3 consecutive CT images.

Figure 4: SimCLR: ResNet18 backbone, with SimCLR pre-trained
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(a) Match (b) Mismatch

Figure 5: Saliency map examples

(a) Case 1 (b) Case 2

Figure 6: Mislabeled examples

Table 3: Comparison results of vanilla ResNet18 under different hyperparameters settings

Table 4: Other attempts with vanilla ResNet and DenseNet
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Table 5: Other attempts with multifarious tricks

Table 6: Comparison results of ResNet18 with asymmetric loss under different hyperparameters
settings
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